Rheology of transgenic switchgrass reveals practical aspects of biomass processing

نویسندگان

  • Guigui Wan
  • Taylor Frazier
  • Julianne Jorgensen
  • Bingyu Zhao
  • Charles E Frazier
چکیده

Background Mechanical properties of transgenic switchgrass have practical implications for biorefinery technologies. Presented are fundamentals for simple (thermo)mechanical measurements of genetically transformed switchgrass. Experimental basics are provided for the novice, where the intention is to promote collaboration between plant biologists and materials scientists. Results Stem sections were subjected to two stress modes: (1) torsional oscillation in the linear response region, and (2) unidirectional torsion to failure. Specimens were analyzed while submerged/saturated in ethylene glycol, simulating natural hydration and allowing experimental temperatures above 100 °C for an improved view of the lignin glass transition. Down-regulation of the 4-Coumarate:coenzyme A ligase gene (reduced lignin content and altered monomer composition) generally resulted in less stiff and weaker stems. These observations were associated with a reduction in the temperature and activation energy of the lignin glass transition, but surprisingly with no difference in the breadth and intensity of the tan δ signal. The results showed promise in further investigations of how rheological methods relate to stem lignin content, composition, and functional properties in the field and in bioprocessing. Conclusions Measurements such as these are complicated by small specimen size; however, torsional rheometers (relatively common in polymer laboratories) are well suited for this task. As opposed to the expense and complication of relative humidity control, solvent-submersion rheological methods effectively reveal fundamental structure/property relationships in plant tissues. Demonstrated are low-strain linear methods, and also nonlinear yield and failure analysis; the latter is very uncommon for typical rheological equipment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass.

Switchgrass is a leading dedicated bioenergy feedstock in the United States because it is a native, high-yielding, perennial prairie grass with a broad cultivation range and low agronomic input requirements. Biomass conversion research has developed processes for production of ethanol and other biofuels, but they remain costly primarily because of the intrinsic recalcitrance of biomass. We show...

متن کامل

Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach

UNLABELLED BACKGROUND The inherent recalcitrance of lignocellulosic biomass is one of the major economic hurdles for the production of fuels and chemicals from biomass. Additionally, lignin is recognized as having a negative impact on enzymatic hydrolysis of biomass, and as a result much interest has been placed on modifying the lignin pathway to improve bioconversion of lignocellulosic feed...

متن کامل

Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production

Switchgrass (Panicum virgatum L.) has been developed into a dedicated herbaceous bioenergy crop. Biomass yield is a major target trait for genetic improvement of switchgrass. microRNAs have emerged as a prominent class of gene regulatory factors that has the potential to improve complex traits such as biomass yield. A miR156b precursor was overexpressed in switchgrass. The effects of miR156 ove...

متن کامل

The TcEG1 beetle (Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release

Background Genetically engineered biofuel crops, such as switchgrass (Panicum virgatum L.), that produce their own cell wall-digesting cellulase enzymes would reduce costs of cellulosic biofuel production. To date, non-bioenergy plant models have been used in nearly all studies assessing the synthesis and activity of plant-produced fungal and bacterial cellulases. One potential source for cellu...

متن کامل

Enhanced Growth Performance and Salinity Tolerance in Transgenic Switchgrass via Overexpressing Vacuolar Na+ (K+)/H+ Antiporter Gene (PvNHX1)

Switchgrass (Panicum virgatum L.) has been increasingly recognized as one of the most valuable perennial bioenergy crop. To improve its biomass production, especially under salt stress, we isolated a putative vacuolar Na+ (K+)/H+ antiporter gene from switchgrass and designated as PvNHX1. Subcellular localization revealed that this protein was localized mainly on the vacuole membrane. The PvNHX1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018